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Purpose: This article presents a computer-aided diagnosis technique for improving the accuracy of
the early diagnosis of Alzheimer’s disease �AD�. Two hundred and ten 18F-FDG PET images from
the ADNI initiative �52 normal controls �NC�, 114 mild cognitive impairment �MCI�, and 53 AD
subjects� are studied.
Methods: The proposed methodology is based on the selection of voxels of interest using the t-test
and a posterior reduction of the feature dimension using factor analysis. Factor loadings are used as
features for three different classifiers: Two multivariate Gaussian mixture model, with linear and
quadratic discriminant function, and a support vector machine with linear kernel.
Results: An accuracy rate up to 95% when NC and AD are considered and an accuracy rate up to
88% and 86% for NC-MCI and NC-MCI,AD, respectively, are obtained using SVM with linear
kernel.
Conclusions: Results are compared to the voxel-as-features and a PCA- based approach and the
proposed methodology achieves better classification performance. © 2010 American Association
of Physicists in Medicine. �DOI: 10.1118/1.3488894�
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I. INTRODUCTION

Alzheimer’s disease �AD� is the most common cause of de-
mentia in the elderly and affects approximately 30�106 in-
dividuals worldwide. With the growth of the older population
in developed nations, the prevalence of AD is expected to
quadruple over the next 50 yr �Refs. 1 and 2�, while its early
diagnosis remains being a difficult task. Therefore, Alzhe-
imer’s disease is a severe global public health problem.
Nowadays, a large amount of potential treatments are under
study. The early stages of Alzheimer’s disease are difficult to
diagnose. A definitive diagnosis is usually made once cogni-
tive impairment compromises daily living activities. A pa-
tient will progress from mild cognitive problems, such as
memory loss through increasing stages of cognitive and non-
cognitive disturbances, and eventually causing death.3

It has been evidenced in the literature that a reduction in
the cerebral metabolic rate of glucose in some regions of the
brain is related to AD. AD images present lower rate of glu-
cose metabolism in bilateral regions in the temporal and pa-
rietal lobes, posterior cingulate gyri and precunei, and also in
other parts of the brain for more severe stage of the demen-
tia. Nevertheless, brain hypometabolism is also presented in
other neurodegenerative disorders. Reductions in the cerebral

metabolic rate of glucose is also detected in mild cognitive
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impairment �MCI� subjects. Furthermore, patients labeled as
MCI present a set of symptoms that might indicate the start
of the disease.4–8

Alzheimer’s diagnosis is usually based on the information
provided by a careful clinical examination, a thorough inter-
view of the patient and relatives, and a neuropsychological
assessment.9–12 An emission computed tomography �ECT�
study is frequently used as a complementary diagnostic tool
in addition to the clinical findings.8,13 However, in late-onset
AD, there is minimal perfusion in the mild stages of the
disease and age-related changes, which are frequently seen in
healthy aged people, have to be discriminated from the mini-
mal disease-specific changes. These minimal changes in the
images make visual diagnosis a difficult task that requires
experienced observers.

In ECT imaging, the dimension of the feature space �num-
ber of voxels� is very large compared to the number of avail-
able training samples �usually �100 images�. This scenario
leads to the so-called small sample size problem,14 as the
number of available samples is greater than the number of
images. Therefore, a reduction in the dimension of the fea-
ture vector is desirable before performing classification. In
this work, a computer-aided diagnosis �CAD� system for as-

sisting Alzheimer’s diagnosis is proposed. This methodology
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is based on a preliminary automatic selection of voxels of
interest using t-test. Then, selected voxels are modeled using
factor analysis �FA�. The observed variables are modeled as
linear combinations of the factors and factor loadings are
used to describe variability among selected voxels in terms
of fewer unobserved variables. These factor loadings will be
used as feature vectors and they allow us to reduce the di-
mension of the problem surmounting the small sample size
problem. Classification is performed using three different ap-
proaches: Fitting a multivariate normal density to each group
with a pooled estimate of covariance; fitting a multivariate
normal density with covariance estimates stratified by group;
and using support vector machine with linear kernels.

This work is organized as follows. In Sec. II the image
acquisition, preprocessing, feature extraction, and classifica-
tion methods used in this paper are presented. In Sec. III, we
summarize the classification performance obtained by apply-
ing the proposed methodology and in Sec. IV, the results are
discussed. Lastly, the conclusions are drawn in Sec. V.

II. MATERIAL AND METHODS

II.A. Image acquisition and labeling
18F-FDG positron emission tomography �PET� images

used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative �ADNI� data-
base �www.loni.ucla.edu/ADNI�. The ADNI was launched in
2003 by the National Institute on Aging, the National Insti-
tute of Biomedical Imaging and Bioengineering, the Food
and Drug Administration, private pharmaceutical companies,
and nonprofit organizations, as a 60 million, 5-year public-
private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging, PET, other
biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of
MCI and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to aid re-
searchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and
cost of clinical trials. The principal investigator of this ini-
tiative is Michael W. Weiner, M.D., VA Medical Center and
University of California-San Francisco. ADNI is the result of
efforts of many coinvestigators from a broad range of aca-
demic institutions and private corporations and subjects have
been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 adults,
ages 55–90, to participate in the research: �200 cognitively
normal older individuals to be followed for 3 yr, 400 people
with MCI to be followed for 3 yr, and 200 people with early
AD to be followed for 2 yr.

18F-FDG PET scans were acquired according to a stan-
dardized protocol. A 30 min dynamic emission scan, consist-
ing of six 5 min frames, was acquired starting 30 min after
the intravenous injection of 5.0�0.5 mCi of 18F-FDG, as
the subjects, who were instructed to fast for at least 4 h prior
to the scan, lay quietly in a dimly lit room with their eyes
open and minimal sensory stimulation. Data were corrected

for radiation-attenuation and scatter using transmission scans
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from Ge-68 rotating rod sources and reconstructed using
measured attenuation correction and image reconstruction al-
gorithms specified for each scanner �www.loni.ucla.edu/
ADNI/Data/ADNIData.shtml�. Following the scan, each im-
age was reviewed for possible artifacts at the University of
Michigan and all raw and processed study data were ar-
chived.

Enrolled subjects were between 55 and 90 �inclusive� yr
of age. Images were labeled as normal subjects, MCI sub-
jects, and mild AD. General inclusion/exclusion criteria are
as follows:

�1� Normal subjects �52 images�: Mini-mental state exam15

�MMSE� scores between 24 and 30 �inclusive�, a clinical
dementia rating16 �CDR� of 0, nondepressed, non-MCI,
and nondemented. The age range of normal subjects will
be roughly matched to that of MCI and AD subjects.
Therefore, there should be minimal enrollment of nor-
mals under the age of 70.

�2� MCI subjects �114 images�: MMSE scores between 24
and 30 �inclusive�, a memory complaint, have objective
memory loss measured by education adjusted scores on
Wechsler Memory Scale Logical Memory II,17 a CDR of
0.5, absence of significant levels of impairment in other
cognitive domains, essentially preserved activities of
daily living, and an absence of dementia.

�3� Mild AD �53 images�: MMSE scores between 20 and 26
�inclusive�, CDR of 0.5 or 1.0, and meets NINCDS-
ADRDA criteria for probable AD proposed in 1984 by
the National Institute of Neurological and Communica-
tive Disorders and Stroke and the Alzheimer’s Disease
and Related Disorders Association.18–20

Let us note that ADNI patient diagnostics are not patho-
logically confirmed; therefore, some uncertainty on the sub-
ject’s labels are introduced unavoidably.

II.B. Image registration

The complexity of brain structures and the differences
among the brains of different subjects make necessary the
normalization of the images with respect to a common tem-
plate. This ensures that the voxels in different images refer to
the same anatomical positions in the brain.

First, the images have been normalized using a general
affine model, with 12 parameters.21,22 After the affine nor-
malization, the resulting image is registered using a more
complex nonrigid spatial transformation model. The defor-
mations are parameterized by a linear combination of the
lowest-frequency components of the three-dimensional co-
sine transform bases23 using the SPM5 software �http://
www.fil.ion.ucl.ac.uk/spm/software/spm5�. A small-
deformation approach is used and regularization is achieved
by the bending energy of the displacement field.

Then, we normalize the intensities of the 18F-FDG PET
images with respect to the maximum intensity, which is com-
puted for each image individually by averaging over the
0.1% of the highest voxel intensities. The intensity normal-

ization process is very important to perform a voxel-by-



6086 Salas-Gonzalez et al.: Factor analysis for Alzheimer’s diagnosis using PET images 6086
voxel comparison between different images. We choose this
intensity normalization procedure because it accomplishes
two different goals: On the one hand, changes in intensity are
linear and, on the other hand, the effect of possible outliers in
the data is mitigated.

Classification results using the proposed intensity normal-
ization procedure outperforms the results obtained when in-
tensity values are not normalized or when each 18F-FDG
PET image is linearly normalized to its maximum value. Of
course, we do not claim this normalization procedure is the
best one, but it allows us to obtain very good classification
results, as it will be shown in Sec. III. Furthermore, this
intensity normalization procedure has been successfully ap-
plied in other recent works.24–27

II.C. Preliminary voxel selection: t-student test

Each 18F-FDG PET image has 62 322 voxels �47�39
�34� with intensity values ranging from 0 to 1. Some of
them correspond to positions outside the brain. We discard
those voxels which present an intensity value lower than
0.35. Basically, positions outside the brain and some very
low-intensity regions inside the brain are discarded.

Then, voxels are ranked using the absolute value two
sample t-student test with pooled variance estimate

It =
Ī�1

− Ī�2

S�1�2
� 1

n1
+

1

n2

, �1�

where Ī�1
and Ī�2

denote the mean 18F-FDG PET image of
subjects labeled as �1 and �2, respectively, ni is the number
of images in population �i, and S�1�2

is an estimator of the
common standard deviation of the two samples.

S�1�2
=��n1 − 1�S�1

2 + �n2 − 1�S�2

2

n1 + n2 − 2
, �2�

where S�i
is the sample standard deviation image for popu-

lation �i, i=1,2 which is defined as

S�i
=� 1

ni − 1�
j=1

ni

�Ij − Ī�i
�2. �3�

Figure 1 shows the brain image It with the value of the
t-test statistic in each voxel. In this example, normals and
AD images were considered in the calculation of the image
It.

Student’s t-test gives us information about voxel class
separability. We select those voxels i which present a
t-statistic greater than a given threshold �

select voxels i:�It�i� � �	 . �4�

Then, those selected voxels will be modeled using factor

analysis.
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II.D. Feature extraction: Factor analysis

Factor analysis is a statistical method used to describe
variability among observed variables in terms of fewer un-
observed variables called factors. The observed variables are
modeled as linear combinations of the factors plus error. We
use factor analysis to reduce the feature dimension. Factor
analysis estimates how much of the variability in the data is
due to common factors.

Suppose we have a set of N observable random variables,
x1 , . . . ,xN with means �1 , . . . ,�N.

Suppose for some unknown constants �ij and m unob-
served random variables Fj, where i�1, . . . ,N and j
�1, . . . ,m, where m�N, we have

xi = �i1F1 + , . . . ,+ �imFm + �i + zi, �5�

where zi is independently distributed error terms with zero
mean and finite variance different for each observable vari-
able. The previous expression can be also written in matrix
form

x = �F + � + z , �6�

where x is a vector of observed variables, � is a constant
vector of means, � is a constant N-by-m matrix of factor
loadings, F is a matrix of independent, standardized common
factors, and z is a vector of independently distributed error
terms.

The following assumptions are imposed to the unobserved
random matrix F: F and z are independent, the mean of F is
equal to 0, and the covariance of F is the identity matrix.
These assumptions allow computing the factor loadings �
using a maximum likelihood approach.28 Once the factor
loadings have been estimated, we rotate them using a Vari-
max approach which is a change of coordinates that maxi-
mizes the sum of the variance of the squared loadings. This
method attempts to maximize the variance on the new axes.
Thus, we obtain a pattern of loadings on each factor that is as
diverse as possible. These factor loadings will be used as
features for classification purposes.

There are some known regions in AD and MCI brain PET
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FIG. 1. t-test value calculated in each voxel. Regions with larger value of the
t-statistic are selected to perform classification.
image which present hypoperfusion �lower-intensity values
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than for a given normal controls �NC� image�. This fact have
been taken into account, preselecting those voxels in the im-
ages which present greater difference between NC, MCI, or
AD images, measuring this difference using the t-test. By
calculating the factor loadings considering only these prese-
lected regions of the brain, we are not modeling the whole
brain using factors but some specific regions of the images.

Thus, the vector of observed random variables x in the
factor analysis model considered consists of a p-component
vector of observations with the highest values of the t-test
statistic measured in each voxel and intensity values greater
than 0.35 for each PET brain image. In order to clarify what
factors do actually model, in Fig. 2, we highlight selected
voxels when p=2000 and normal controls and Alzheimer’s
patients are considered. Therefore, in that case, x would con-
sist of p=2000 intensity values.

An interpretation of the meaning of the factor loadings
and why they are useful to perform classification in brain
image classification arises from Eq. �6�. Each intensity value
of the selected voxels after zero-mean normalization is ex-
pressed using a new basis using the factors F. These factors,
which are estimated via factor analysis, are common to all
the images. Factor loadings � are the weights which are also
calculated using factor analysis and they are different for
each image. When images of different classes are expressed
using the basis given by factors F, they roughly present simi-
lar intraclass and different interclass values of factor loadings
�. We take advantage of this behavior and use factor load-
ings as features for classification purposes.

II.E. Classification

The goal of the classification task is to separate a set of
binary labeled training data consisting of, in the general case,
p-dimensional patterns vi and class labels yi

�v1,y1�,�v2,y2�, . . . ,�vl,yl� � �Rp � ��1,�2	� , �7�

so that a classifier is produced, which maps an object vi to its
classification label yi. This classifier will be able to classify
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FIG. 2. Solid color: p=2000 selected voxels when normal controls and AD
patients are considered.
new examples v.
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There are several different procedures to build the classi-
fication rule. We utilize the following classifiers in this
work.29,30

II.E.1. Multivariate normal model: Quadratic
discriminant function

We suppose that v denotes a p-component random vector
of observations made on any individual; v0 denotes a particu-
lar observed value of v and �1 and �2 denote the two popu-
lations involved in the problem. The basic assumption is that
v has different probability distributions in �1 and �2. Let the
probability density of v be f1�v� in �1 and f2�v� in �2. The
simplest intuitive argument, termed the likelihood ratio rule,
classifies v0 as �1 whenever it has greater probability of
coming from �1 than from �2. This classification rule can be
written as

v0 � �1 if f1�v0�/f2�v0� � 1, �8�

v0 � �2 if f1�v0�/f2�v0� 	 1. �9�

The most general form of the model is to assume that �i is a
multivariate normal population with mean �i and dispersion
matrix �i for i=1,2. Thus f i�v�= �2��−p/2
�i
−1/2exp� 1

2 �v
−�i���i

−1�v−�i�	, so that we obtain

f1�v�
f2�v�

= 
�2
1/2
�1
−1/2exp�−
1

2
�v���1

−1 − �2
−1�v

− 2v���1
−1�1 − 
2

−1�2� + �1��1
−1�1 − �2��2

−1�2	� .

�10�

Hence, on taking logarithms in Eq. �8�, we find that the
classification rule for this model is: Allocate v0 to �1 if
Q�v0��0 and otherwise to �2, where Q�v� is the discrimi-
nant function

Q�v� = 1
2 log�
�2
/
�1
	 − 1

2 �v���1
−1 − �2

−1�v − 2v���1
−1�1

− �2
−1�2� + �1��1

−1�1 − �2��2
−1�2	 . �11�

Since the terms in Q�v� include the quadratic form v���1
−1

−�2
−1�v, which will be a function of the squares of elements

of v and cross products between pairs of them, this discrimi-
nant function is known as the quadratic discriminant.

In any practical application, the parameters �1, �2, �1,
and �2 are not known. Given two training sets, v1

�1� , . . . ,vn1

�1�

from �1 and v1
�2� , . . . ,vn2

�2� from �2, we can estimate these
parameters using the sample mean and sample standard de-
viation.

II.E.2. Multivariate normal model: Linear
discriminant function

The presence of two different population dispersion ma-
trices renders difficult the testing of hypothesis about the
population mean vectors; therefore, the assumption �1=�2
=� is a reasonable one in many practical situations. The
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practical benefits of making this assumption are that the dis-
criminant function and allocation rule simplifies. If �1=�2

=�, then

f i�v� = �2��−p/2
�
−1/2exp�− 1
2 �v − �i���−1�v − �i�	 �12�

and the classification rule reduces to allocate v to �1 if
L�v��0 and otherwise to �2, where L�v�= ��1−�2���−1�v
− 1

2 ��1+�2�	. No quadratic terms now exist in the discrimi-
nant function L�v�, which is therefore called the linear dis-
criminant function.

In that case, contrary to the quadratic case, we estimate
the pooled covariance matrix

� =
1

n1 + n2 − 2�
i=1

n1

�vi
�1� − �1��vi

�1� − �1��� �13�

 + �
i=1

n2

�vi
�2� − �2��vi

�2� − �2��� . �14�

II.E.3. Support vector machines with linear
kernels

Support vector machines �SVMs� have recently been pro-
posed for pattern recognition in a wide range of applications
by its ability for learning from experimental data. SVMs
separate a given set of binary labeled training data with a
hyperplane that is maximally distant from the two classes
�known as the maximal margin hyperplane�. Linear discrimi-
nant functions define decision hypersurfaces or hyperplanes
in a multidimensional feature space

g�v� = wTv + w0 = 0, �15�

where w is the weight vector and w0 is the threshold. w is
orthogonal to the decision hyperplane. The goal is to find the
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unknown weight vector w which defines the decision
hyperplane.30

Let vi, i=1,2 , . . . , l be the feature vectors of the training
set. These belong to two different classes, �1 or �2, which
for convenience in the mathematical calculations will be de-
noted as +1 and �1. If the classes are linearly separable, the
objective is to design a hyperplane that classifies correctly all
the training vectors. This hyperplane is not unique and it can
be estimated maximizing the performance of the classifier,
that is, the ability of the classifier to operate satisfactorily
with new data. The maximal margin of separation between
both classes is a useful design criterion. Since the distance
from a point v to the hyperplane is given by z= 
g�v�
 / �w�,
the optimization problem can be reduced to the maximiza-
tion of the margin 2 / �w�, with constraints by scaling w and
w0 so that the value of g�v� is +1 for the nearest point in �1

and �1 for the nearest point in �2. The constraints are the
following:

wTv + w0 � 1, ∀ v � �1, �16�

wTv + w0 	 1, ∀ v � �2, �17�

or, equivalently, minimizing the cost function J�w�
=1 /2�w�2 subject to

yi�wTvi + w0� � 1,i = 1,2, . . . ,l . �18�

III. RESULTS

The performance of the classification is tested on a set of
210 18F-FDG PET images �52 normals, 114 MCI, and 53
AD� using the leave-one-out method: The classifier is trained
with all but one image of the database and the remaining
image, which is not used to define the classifier, is then cat-
egorized. In that way, all 18F-FDG PET images are classified
and the success rate is computed from the number of cor-

40
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FIG. 3. Correct rate versus number of factors when NC
and AD images are considered. The dotted line is the
accuracy rate obtained using voxel-as-features.
35
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rectly classified subjects. This cross-validation strategy has
been previously used to assess the discriminative accuracy of
different multivariate analysis methods applied to the early
diagnosis of Alzheimer’s disease,26 discrimination of fronto-
temporal dementia from AD,13 and in classifying atrophy
patterns based on magnetic resonance imaging images.31

Initially, threshold � was set to 2000 voxels. Classification
schemes used in this work are binary approaches; therefore,
they are able to perform classification based on a training set
of two previously labeled items. Nevertheless, we work with
three classes of 18F-FDG PET images, NC, MCI, and AD.
Thus, we perform three different classification tasks. First,
we consider only NC and AD images; second, NC versus
MCI; and lastly we perform classification of NC subjects
versus MCI-AD. The proposed methodology is compared to
the voxel-as-features �VAF� approach with linear support
vector machine classifier.32–34

III.A. NC versus AD

Figure 3 shows the correct rate versus the dimension m of
factors F �number of unobserved random variables F�. Lin-
ear classifiers perform better than the multivariate normal
model with quadratic discriminant function. In general, the
accuracy rate increases concomitantly with the dimension of
factors for small values of m. Best correct rates are achieved
when m is in the range 13–20 when we use SVM with linear
kernel and multivariate normal model with linear discrimi-
nant function. Specifically, a correct rate up to 95% is
reached when m=17 for SVM with linear kernels. For m
�20, performance of the classification task decreases with
the dimension of the number of factors.

The ADNI database excludes advanced AD affected sub-
jects. The ADNI database represents some ideal laboratory
conditions, as subjects are recruited following a restricted
clinical criteria to select only early AD related issues. There-
fore, these favorable conditions allows proving the discrimi-
nation ability of the classifier in the discrimination of the
Alzheimer’s disease in an early stage of the disease.

Figure 4 shows the specificity and the sensitivity versus
the number of factors for the three classifiers used in this
work. The quadratic discriminant function reaches higher
specificity values but very low sensitivity for a number of
factors greater than 10. Specificity and sensitivity results ob-
tained using the multivariate normal model with linear dis-
criminant function and linear SVM are roughly the same
except for number of factors greater than 30, where the linear
discriminant function performs slightly better.

We have also drawn a scatter plot with samples from the
loading factors when m=2 in Fig. 5. Figure 5 shows that
even in the case in which two factor loadings are considered,
most of the � values for NC and AD images are clearly
separated.

III.B. NC versus MCI

Figure 6 shows the correct rate versus number of factor
loadings F when NC and MCI patients are considered. Our

method presents, in that case, lower performance than when
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the NC and AD images were considered. This is due to the
fact that images labeled as MCI present subjects with very
different intensity patterns: Patients with memory complaint
verified by a study partner, subjects presenting abnormal
memory function, frontotemporal dementia, possibly MCI to
AD converters, and subjects with general cognition and func-
tional performance sufficiently preserved such that a diagno-
sis of Alzheimer’s disease cannot be made at the time of the
screening visit. This wide variability in the MCI group
makes the automatic computer-aided diagnosis method pre-
sented in this paper to work slightly worse than when only
NC and AD subjects were considered. Equally to the NC-AD
case, the quadratic classifier performs worse than the linear
ones. Furthermore, from F=1 to F=14, support vector ma-
chines with linear kernels performs better than the multivari-
ate normal model with linear discriminant function, while for
F�16 they perform similarly. Our method presents better
performance when the number of factor loadings is greater
than 16. Specifically, the accuracy rate is greater than 85%
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FIG. 4. �a� Specificity versus number of factors. �b� Sensitivity versus num-
ber of factors.
and up to 88%.
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Figure 7 shows the specificity and the sensitivity versus
the number of factors. Let us note that the number of NC and
MCI images are 52 and 114, respectively. In that case, the
use of imbalanced training data set causes a possible poor
performance of specificity or sensitivity since they are
sample prevalence dependent. Quadratic discriminant func-
tion performs very bad in that case, reaching very high speci-
ficity values and very low sensitivity for a small number of
factors. On the other hand, when the number of factors is
greater than 35, quadratic discriminant function is not suit-
able for classification purposes since one obtains a sensitivity
nearly 1 and a very low specificity. In that case, SVM linear
and linear discriminant functions perform much better. Fig-
ure 7�a� shows that the linear discriminant function presents
higher and more stable specificity values ��0.9� for a wide
range of number of factors. Figure 7�b� shows a similar be-
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havior for SVM linear when sensitivity is considered: High
and very stable values ��0.9� for a wide range of number of
factors.

III.C. NC versus MCI,AD

The number of NC and �MCI,DTA	 images are 52 and
167, respectively; therefore, in that case, is inappropriate to
calculate specificity or sensitivity values. A low specificity
value in this largely unbalanced data set may not reflect a
high false negative rate. Figure 8 depicts the accuracy rate
versus the number of factors when NC subjects and a group
composed of MCI and AD images are considered. In that
case, SVM performs clearly better than the multivariate nor-
mal classifier with linear and quadratic discriminant func-
tion. Let note that this scenario is more difficult than classi-
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FIG. 5. Matrix of scatter plots for �1 and �2 when m
=2.

40
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FIG. 6. Correct rate versus number of factors when NC
and MCI subjects are considered. The dotted line is the
accuracy rate obtained using VAF.
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fying NC versus MCI or NC versus AD. In Sec. III D, the
diversity of MCI subjects was pointed out. In that case, a
new source of heterogeneity is included in the problem and
this causes the accuracy rate to be slightly lower than when
only NC and MCI were considered. Despite that, the pro-
posed methodology reaches a correct rate greater than 85%
when the number of factor loadings F ranges from 8 to 19. In
that case, our method also outperforms the VAF approach
when using SVM.

III.D. Performance for different threshold values ε

Up to now, threshold � has been set to 2000 voxels. Simu-
lations were also performed selecting 3000, 4000, and 5000
voxels �results not shown�. In that case, the classification
performance was slightly lower than when 2000 voxels were
considered. Nevertheless, the computation time increases
and the factor analysis algorithm is not able to reach conver-
gence for large values of the number of factors. Therefore,
either the relative convergence tolerance for varimax rotation
�1.510−8� needs to be reduced or the iteration limit �250 it-
erations� increased, leading to lower computational perfor-
mance.

We also compare the performance of the method using
different threshold values � ��=2000,1500,1000,500�.
Table I presents the mean correct rate and standard deviation
when the number of factors is in the interval m= �10,20�.
Best results are obtained when �=2000. Nevertheless, very
good performance of the proposed methodology is reached
for each one of the threshold values considered.

IV. DISCUSSION

Multinormal models with linear or quadratic discriminant
functions exhibit a strong dependence on outliers as they
consider that the distribution of feature vector for popula-
tions �1 and �2 follow a Gaussian distribution. Thus, this
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FIG. 8. Correct rate versus number of factors when NC
and MCI,AD subjects are considered. The dotted line is
the accuracy rate obtained using VAF.
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assumption could lead to poor results in the case in which the
Gaussian assumption does not hold, as for instance, due to
the presence of outliers in the populations. This is a typical
problem which arises when the number of samples is small.
Results in this work showed better performance when using
SVM with linear kernel than in the case in which linear and
quadratic discriminant functions were used. Specifically, in
the case in which normal controls versus AD and MCI pa-
tients were considered, linear and quadratic discriminant
functions obtained very poor performance. This could be due
to the fact that including MCI and AD in the same group
increases the heterogeneity of the feature vector and, there-
fore, the Gaussian assumption is not valid in that case. For
this reason, and based on the results shown in the Sec. III,
support vector machine with linear kernel is the preferred of
the classifiers used in this work.

In order to discuss the behavior of multinormal models
for classification and the performance of this classification
methods for different number of samples, simulations have
been repeated using a k-fold cross-validation scheme with
k=2. Specifically, when k=2, N /2 images are used as train-
ing sets and the remaining N /2 images are considered test
images. This allows checking the performance of the classi-
fication methods when a smaller number of images is con-
sidered, and therefore, it allows us to investigate the small
size sample problem empirically. In Table II, the mean accu-
racy rate for m=10 to m=20 number of factor loadings ob-
tained using leave-one-out and k-fold with k=2 are com-

TABLE I. Comparison of the mean accuracy rate for
threshold values �. Standard deviations in parenthese

�=200

NC versus AD SVM 0.92 �0.0
Linear 0.92 �0.0

Quadratic 0.89 �0.0
NC versus MCI SVM 0.86 �0.0

Linear 0.83 �0.0
Quadratic 0.80 �0.0

NC versus MCI,AD SVM 0.85 �0.0
Linear 0.79 �0.0

Quadratic 0.76 �0.0

TABLE II. Comparison of the mean accuracy rate for m=10 to m=20 number
of factor loadings using leave-one-out and k-fold with k=2.

Leave-one-out Twofold

NC versus AD SVM 0.92 0.87
Linear 0.92 0.89

Quadratic 0.89 0.85
NC versus MCI SVM 0.86 0.83

Linear 0.83 0.81
Quadratic 0.80 0.77

NC versus MCI,AD SVM 0.85 0.82
Linear 0.79 0.77

Quadratic 0.76 0.76
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pared. The table shows that the best performance is obtained
when leave-one-out is used as validation method which is an
expected result. Nevertheless, let us note that good perfor-
mance is also obtained when only half of the available im-
ages are used to train the classifier.

In this work, we do not propose an analytical procedure to
estimate the value of the number of factor loadings. Never-
theless, some order selection technique could be possibly
used to select the number of factor loadings. We estimate the
performance of the classification task for a different number
of �. This procedure allows to easily estimate an “optimal”
value of the threshold in the sense that it lets us select those
values of the number of factor loadings which better dis-
criminate between populations. Thus, the plot of the accu-
racy rate versus the threshold enables to visually select an
useful value �or a range of values� of � for classification.

Overfitting generally occurs when a model is excessively
complex, such as having too many degrees of freedom, in
relation to the amount of data available. In our case, this is a
possible scenario when using support vector machines with
nonlinear kernels or nonlinear discriminant functions to per-
form classification. For this reason, we only use SVM with
linear kernel. Therefore, choosing linear classifiers, or in that
case, SVM with linear kernel, is supported not only by the
good performance results but also by the fact that this choice
lets us to avoid possible overfitting.

In addition, we would like to point out that choosing a
wide range of � values and calculating the performance of
the classification task is enough for our practical purposes for
different reasons. On the one hand, the estimation of a very
precise and specific number of factors m is not critical as the
accuracy of the proposed methodology is high for a wide
range of m values for the data set studied �as instance, from
m=2 to m=20 when NC versus AD was considered, and m
�7 and m�8 when NC versus MCI and NC versus
MCI,AD�. On the other hand, if we choose to estimate the
threshold value using an analytical procedure, lastly, the per-
formance of this analytical selection procedure based on a
statistical criterion should be checked in terms of accuracy,
specificity, and sensitivity for different values of the number
of factor loadings in order to prove the validity of the method
used to estimate the order model. And, actually, this is the

0 to m=20 number of factor loadings for different

�=1500 �=1000 �=500

0.90 �0.02� 0.87 �0.02� 0.86 �0.02�
0.89 �0.01� 0.87 �0.01� 0.85 �0.01�
0.85 �0.01� 0.87 �0.01� 0.80 �0.02�
0.86 �0.02� 0.85 �0.03� 0.82 �0.02�
0.83 �0.02� 0.82 �0.03� 0.80 �0.01�
0.78 �0.03� 0.77 �0.02� 0.80 �0.02�
0.84 �0.01� 0.83 �0.02� 0.82 �0.01�
0.77 �0.01� 0.77 �0.01� 0.75 �0.01�
0.76 �0.01� 0.76 �0.01� 0.76 �0.01�
m=1
s.

0

2�
1�
1�
1�
3�
2�
1�
1�
1�
experimental method we use in that work to estimate useful
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values of the number of factors. Furthermore, the estimation
of the number of �, equal to the training procedure, only
needs to be performed once as a “batch” process.

In Ref. 35, a CAD system for an automatic evaluation of
the neuroimages is presented. In that work, principal compo-
nent analysis �PCA� based methods are proposed as feature
extraction techniques, enhanced by other linear approaches
such as linear discriminant analysis or the measure of the
Fisher discriminant ratio for feature selection. These features
allow surmounting the so-called small sample size problem.
We have used the PCA-based feature extraction method pre-
sented there as the input vector of a SVM classifier with
linear kernel in order to compare to our proposed methodol-
ogy. For the data set used in this work, best values of the
correct rate, specificity, and sensitivity using both approaches
are shown in Table III.

Despite of the fact that an empirical estimation of m is
enough for our purposes, we suggest a possible method to
calculate an optimal m value using an analytical procedure
studying the value of the log-likelihood. Figure 9 plots the

TABLE III. Comparison between the performance of the FA proposed in this
work and the PCA-based method �PCA� in Ref. 35. m is the number of
factors or components.

FA PCA

NC versus AD Acc 95.2 89.5
Sen 98.1 84.5
Spe 92.5 84.7
m 17 8

NC versus MCI Acc 88.0 81.3
Sen 91.2 97.4
Spe 80.8 46.1
m 19 30

NC versus MCI,AD Acc 86.3 82.2
Sen 92.8 92.21
Spe 65.4 50
m 11 30
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log-likelihood versus m �the number of factors� in the case in
which NC versus MCI,AD images are considered. It can be
seen how increasing m also increases the ability of the factor
loadings to model the data more accurately �the log-
likelihood increases�. Log-likelihood values when m is small
�from m=1 to m=7� present a great variability. This coin-
cides with the same range of values in which our algorithm
does not provide high correct rate, possibly due to the fact
that the number of factors is not enough to model correctly
the variability of the data.

The factor analysis model in Eq. �6� can also be specified
as

cov�x� = ��T + cov�z� , �19�

where cov�z� is a p-by-p diagonal matrix of specific vari-
ances and p is the number of observed variables. Finally, we
study the values of cov�z� representing the mean of the di-
agonal values of matrix cov�z� for each group NC versus
AD, NC versus MCI, and NC versus MCI,AD in Fig. 10. In
these three cases the values are very similar and, as it was
expected, they decrease as the number of factors increase,
because for greater values of m, the factors are more capable
to model the observed random variables.

V. CONCLUSIONS

In this work, an automatic procedure to assist the diagno-
sis of early Alzheimer’s disease is presented. The proposed
methodology is based on the selection of voxels of interest
using the t-test and a posterior reduction of the feature di-
mension using factor analysis. Factor loadings were used as
features of three different classifiers: Two multivariate
Gaussian mixture models, with linear and quadratic discrimi-
nant function, and a support vector machine with linear ker-
nel which was found to achieve the highest accuracy rate.
The best results were obtained when normal and Alzheimer’s
disease subjects were considered. Specifically, an accuracy
rate greater than 90% were obtained in that case for a wide
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range of number of factors. Furthermore, results were com-
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pared to the voxel-as-features and a PCA-based approach.
The proposed methodology was found to perform clearly
better.
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